Periodic Billiard Trajectories in Smooth Convex Bodies

نویسنده

  • R. N. KARASEV
چکیده

We consider billiard trajectories in a smooth convex body in R and estimate the number of distinct periodic trajectories that make exactly p reflections per period at the boundary of the body. In the case of prime p we obtain the lower bound (d − 2)(p − 1) + 2, which is much better than the previous estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology of Billiard Problems, Ii

In this paper we give topological lower bounds on the number of periodic and of closed trajectories in strictly convex smooth billiards T ⊂ Rm+1. Namely, for given n, we estimate the number of n-periodic billiard trajectories in T and also estimate the number of billiard trajectories which start and end at a given point A ∈ ∂T and make a prescribed number n of reflections at the boundary ∂T of ...

متن کامل

Periodic trajectories in 3-dimensional convex billiards

We give a lower bound on the number of periodic billiard trajectories inside a generic smooth strictly convex closed surface in 3-space: for odd n, there are at least 2(n − 1) such trajectories. Convex plane billiards were studied by G. Birkhoff, and the case of higher dimensional billiards is considered in our previous papers. We apply a topological approach based on the calculation of cohomol...

متن کامل

Periodic trajectories in 3-dimensional convex billiards

We give a lower bound on the number of periodic billiard trajectories inside a generic smooth strictly convex closed surface in 3-space: for odd n, there are at least 2(n − 1) such trajectories. Convex plane billiards were studied by G. Birkhoff, and the case of higher dimensional billiards is considered in our previous papers. We apply a topological approach based on the calculation of cohomol...

متن کامل

On three-periodic trajectories of multi-dimensional dual billiards

We consider the dual billiard map with respect to a smooth strictly convex closed hypersurface in linear 2m-dimensional symplectic space and prove that it has at least 2m distinct 3-periodic orbits. AMS Classi cation 37J45, 70H12

متن کامل

Shortest billiard trajectories ∗

In this paper we prove that any convex body of the d-dimensional Euclidean space (d ≥ 2) possesses at least one shortest generalized billiard trajectory moreover, any of its shortest generalized billiard trajectories is of period at most d + 1. Actually, in the Euclidean plane we improve this theorem as follows. A disk-polygon with parameter r > 0 is simply the intersection of finitely many (cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009